团队名称:新能源纳米材料与应用
联系方式:jishan@zjxu.edu.cn;
团队介绍:
季山博士2017年3月离开英国伦敦大学学院化学工程系加入了嘉兴学院生物与化学工程学院,并开始组建新能源纳米材料与应用研究团队。团队目前的工作涉及到燃料电池催化剂、电感应器、新型燃料电池的应用、电解水制氢、超级电容器等多个领域。
主要研究方向:
1. 二氧化碳制甲醇催化剂体系:二氧化碳制甲醇是“甲醇经济”中最重要的反应。研究方向一是基于金属氧化物的催化剂,研究其催化剂活性与催化剂成分形貌之间的关系,探索催化机理;二是以新型的碳材料为基础,探索电催化二氧化碳转化的反应。
2. 储能和能量转化的纳米功能材料:通过控制电极材料的纳米形貌,合成廉价的高性能纳米金属氧化物并应用于超级电容器中;以新型高比表面碳材料为基础,在其上负载贵金属催化剂作为燃料电池用电催化剂,并研究形貌与催化性能之间的关系。
3. 新型燃料电池在无人机中的应用:传统燃料电池是通过石墨双极板来进行串联的,而石墨板价格较贵、重量大而且易碎,造成石墨板组装的燃料电池价格昂贵且较重,制约了它的商业化。本研究方向,开发了一种新型燃料电池技术,它利用价格比较低廉的传统电路板经过特殊的防腐处理来代替石墨板,从而大大减轻了燃料电池电堆的重量和价格,非常适合应用于无人机中。
代表性成果(SCI论文):
[1] F. Zhang, S. Ji, H. Wang, H. Liang, X. Wang, R. Wang, Implanting Cobalt Atom Clusters within Nitrogen-Doped Carbon Network as Highly Stable Cathode for Lithium–Sulfur Batteries, Small Methods 5(6) (2021) 2100066.
[2] Q. Dong, S. Ji, X. Wang, H. Wang, V. Linkov, R. Wang, Uniform Bamboo-like N-Doped Carbon Nanotubes Derived from a g-C3N4 Substrate Grown via Anchoring Effect to Boost the Performance of Metal–Air Batteries, ACS Applied Energy Materials 3(11) (2020) 11213-11222.
[3] Y. Wu, H. Wang, S. Ji, B.G. Pollet, X. Wang, R. Wang, Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting, Nano Research (2020).
[4] Z. Wang, H. Wang, S. Ji, X. Wang, B.G. Pollet, R. Wang, Multidimensional regulation of Ni3S2@Co(OH)2 catalyst with high performance for wind energy electrolytic water, Journal of Power Sources 446 (2020) 227348.
[5] Q. Dong, Z. Mo, H. Wang, S. Ji, X. Wang, V. Linkov, R. Wang, N-Doped Carbon Networks Containing Inserted FeNx@NC Nanospheroids and Bridged by Carbon Nanotubes as Enhanced Catalysts for the Oxygen Reduction Reaction, ACS Sustainable Chemistry & Engineering (2020).
[6] J. Shen, Y. Feng, P. Wang, G. Qiu, L. Zhang, L. Lu, H. Wang, R. Wang, V. Linkov, S. Ji, Conductive sulfur-rich copolymer composites as lithium-sulfur battery electrodes with fast kinetics and high cycle stability, ACS Sustainable Chemistry & Engineering (2020).
[7] R. Wang, Q. Dong, H. Wang, S. Ji, X. Wang, V. Linkov, Molten-salt media synthesis of N-doped carbon tubes containing encapsulated Co nanoparticles as bifunctional air cathode for zinc-air batteries, Chemistry – A European Journal n/a(n/a) (2020).
[8] H. Wang, L. Lu, P. Subramanian, S. Ji, P. Kannan, Co, Fe-ions intercalated Ni(OH)2 network-like nanosheet arrays as highly efficient non-noble catalyst for electro-oxidation of urea, International Journal of Hydrogen Energy 46(69) (2021) 34318-34332.
[9] X. Lv, S. Ji, V. Linkov, X. Wang, H. Wang, R. Wang, Three-dimensional N-doped super-hydrophilic carbon electrodes with porosity tailored by Cu2O template-assisted electrochemical oxidation to improve the performance of electrical double-layer capacitors, Journal of Materials Chemistry A 9(5) (2021) 2928-2936.
[10] H. Wang, J. Ding, P. Kannan, P. Subramanian, S. Ji, Nitrogen-doped mesoporous carbon nanosheet network entrapped nickel nanoparticles as an efficient catalyst for electro-oxidation of glycerol, International Journal of Hydrogen Energy 45(53) (2020) 28821-28835.
论文:
[1] Wang R, Ma Y, Wang H, Key J, Brett D, Ji S*, Yin S, Shen P, A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability, Journal of Materials Chemistry A, 2016, 4:7591-7595.
[2] S. Ji, Y. Ma, H. Wang, J, Key, D. Brett* and R. Wang*, Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material, accepted by Electrochimica Acta. 2016, 219:540-546.
[3] Wang H, Ma Y, Wang R*, Key J, Linkovb V, Ji S*. Liquid–liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chemical Communications. 2015;51:3570-3.
[4] Ma Y, Li H, Wang R*, Wang H, Lv W, Ji S*. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. Journal of Power Sources. 2015;289:22-5.
[5] Ma Y, Wang R*, Wang H, Key J, Ji S*. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources. 2015;280:526-32.
[6] Wang K, Wang R*, Li H, Wang H, Mao X, Linkov V, Ji S*. N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media. International Journal of Hydrogen Energy. 2015;40:3875-82.
[7] Wang R*, Wang H, Zhou T, Key J, Ma Y, Zhang Z, Ji S*. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. Journal of Power Sources. 2015;274:741-7.
[8] Wang R*, Wang K, Wang Z, Song H, Wang H, Ji S*. Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. Journal of Power Sources. 2015;297:295-301.
[9] Jia J, Wang H, Ji S*, Yang H, Li X, Wang R*. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction. Electrochimica Acta. 2014;141:13-9.
[10] Kang J, Wang H, Ji S*, Key J, Wang R*. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. Journal of Power Sources. 2014;251:363-9.
外国专利:
[1] Shan Ji, Vladimir Linkov etc, Supported Catalysts, EP2446494 A0
[2] Shan Ji, Vladimir Linkov etc, Method for producing a carbon composite material CA2757600